1.

Solutions to the differential equation $\frac{dy}{dx} = xy^3$ also satisfy $\frac{d^2y}{dx^2} = y^3(1+3x^2y^2)$. Let y = f(x) be a particular solution to the differential equation $\frac{dy}{dx} = xy^3$ with f(1) = 2.

- (a) Write an equation for the line tangent to the graph of y = f(x) at x = 1.
- (b) Use the tangent line equation from part (a) to approximate f(1.1). Given that f(x) > 0 for 1 < x < 1.1, is the approximation for f(1.1) greater than or less than f(1.1)? Explain your reasoning.
- (c) Find the particular solution y = f(x) with initial condition f(1) = 2.

2.

Consider the differential equation $\frac{dy}{dx} = \frac{y^2}{x-1}$.

- (a) On the axes provided, sketch a slope field for the given differential equation at the six points indicated.
- (b) Let y = f(x) be the particular solution to the given differential equation with the initial condition f(2) = 3. Write an equation for the line tangent to the graph of y = f(x) at x = 2. Use your equation to approximate f(2.1).
- (c) Find the particular solution y = f(x) to the given differential equation with the initial condition f(2) = 3.

3.

A coffeepot has the shape of a cylinder with radius 5 inches, as shown in the figure above. Let h be the depth of the coffee in the pot, measured in inches, where h is a function of time t, measured in seconds. The volume V of coffee in the pot is changing at the rate of $-5\pi\sqrt{h}$ cubic inches per second. (The volume V of a cylinder with radius r and height h is $V = \pi r^2 h$.)

(a) Show that $\frac{dh}{dt} = -\frac{\sqrt{h}}{5}$.

(b) Given that h = 17 at time t = 0, solve the differential equation $\frac{dh}{dt} = -\frac{\sqrt{h}}{5}$ for h as a function of t.

(c) At what time t is the coffeepot empty?

